boost/random/generalized_inverse_gaussian_distribution.hpp
/* boost random/generalized_inverse_gaussian_distribution.hpp header file * * Copyright Young Geun Kim 2025 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org for most recent version including documentation. * * $Id$ */ #ifndef BOOST_GENERALIZED_RANDOM_INVERSE_GAUSSIAN_DISTRIBUTION_HPP #define BOOST_GENERALIZED_RANDOM_INVERSE_GAUSSIAN_DISTRIBUTION_HPP #include <boost/config/no_tr1/cmath.hpp> #include <istream> #include <iosfwd> #include <limits> #include <boost/assert.hpp> #include <boost/limits.hpp> #include <boost/random/detail/config.hpp> #include <boost/random/detail/operators.hpp> #include <boost/random/uniform_01.hpp> namespace boost { namespace random { /** * The generalized inverse gaussian distribution is a real-valued distribution with * three parameters p, a, and b. It produced values > 0. * * It has * \f$\displaystyle p(x) = \frac{(a / b)^{p / 2}}{2 K_{p}(\sqrt{a b})} x^{p - 1} e^{-(a x + b / 2) / 2}\f$. * where \f$\displaystyle K_{p}\f$ is a modified Bessel function of the second kind. * * The algorithm used is from * * @blockquote * "Random variate generation for the generalized inverse Gaussian distribution", * Luc Devroye, * Statistics and Computing, * Volume 24, 2014, Pages 236 - 246 * @endblockquote */ template<class RealType = double> class generalized_inverse_gaussian_distribution { public: typedef RealType result_type; typedef RealType input_type; class param_type { public: typedef generalized_inverse_gaussian_distribution distribution_type; /** * Constructs a @c param_type object from the "p", "a", and "b" * parameters. * * Requires: * a > 0 && b >= 0 if p > 0, * a > 0 && b > 0 if p == 0, * a >= 0 && b > 0 if p < 0 */ explicit param_type(RealType p_arg = RealType(1.0), RealType a_arg = RealType(1.0), RealType b_arg = RealType(1.0)) : _p(p_arg), _a(a_arg), _b(b_arg) { BOOST_ASSERT( (p_arg > RealType(0) && a_arg > RealType(0) && b_arg >= RealType(0)) || (p_arg == RealType(0) && a_arg > RealType(0) && b_arg > RealType(0)) || (p_arg < RealType(0) && a_arg >= RealType(0) && b_arg > RealType(0)) ); } /** Returns the "p" parameter of the distribution. */ RealType p() const { return _p; } /** Returns the "a" parameter of the distribution. */ RealType a() const { return _a; } /** Returns the "b" parameter of the distribution. */ RealType b() const { return _b; } /** Writes a @c param_type to a @c std::ostream. */ BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm) { os << parm._p << ' ' << parm._a << ' ' << parm._b; return os; } /** Reads a @c param_type from a @c std::istream. */ BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm) { is >> parm._p >> std::ws >> parm._a >> std::ws >> parm._b; return is; } /** Returns true if the two sets of parameters are the same. */ BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs) { return lhs._p == rhs._p && lhs._a == rhs._a && lhs._b == rhs._b; } /** Returns true if the two sets of parameters are different. */ BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type) private: RealType _p; RealType _a; RealType _b; }; #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS BOOST_STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer); #endif /** * Constructs an @c generalized_inverse_gaussian_distribution from its "p", "a", and "b" parameters. * * Requires: * a > 0 && b >= 0 if p > 0, * a > 0 && b > 0 if p == 0, * a >= 0 && b > 0 if p < 0 */ explicit generalized_inverse_gaussian_distribution(RealType p_arg = RealType(1.0), RealType a_arg = RealType(1.0), RealType b_arg = RealType(1.0)) : _p(p_arg), _a(a_arg), _b(b_arg) { BOOST_ASSERT( (p_arg > RealType(0) && a_arg > RealType(0) && b_arg >= RealType(0)) || (p_arg == RealType(0) && a_arg > RealType(0) && b_arg > RealType(0)) || (p_arg < RealType(0) && a_arg >= RealType(0) && b_arg > RealType(0)) ); init(); } /** Constructs an @c generalized_inverse_gaussian_distribution from its parameters. */ explicit generalized_inverse_gaussian_distribution(const param_type& parm) : _p(parm.p()), _a(parm.a()), _b(parm.b()) { init(); } /** * Returns a random variate distributed according to the * generalized inverse gaussian distribution. */ template<class URNG> RealType operator()(URNG& urng) const { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; using std::log; using std::min; using std::exp; using std::cosh; #endif RealType t = result_type(1); RealType s = result_type(1); RealType log_concave = -psi(result_type(1)); if (log_concave >= result_type(.5) && log_concave <= result_type(2)) { t = result_type(1); } else if (log_concave > result_type(2)) { t = sqrt(result_type(2) / (_alpha + _abs_p)); } else if (log_concave < result_type(.5)) { t = log(result_type(4) / (_alpha + result_type(2) * _abs_p)); } log_concave = -psi(result_type(-1)); if (log_concave >= result_type(.5) && log_concave <= result_type(2)) { s = result_type(1); } else if (log_concave > result_type(2)) { s = sqrt(result_type(4) / (_alpha * cosh(1) + _abs_p)); } else if (log_concave < result_type(.5)) { s = min(result_type(1) / _abs_p, log(result_type(1) + result_type(1) / _alpha + sqrt(result_type(1) / (_alpha * _alpha) + result_type(2) / _alpha))); } RealType eta = -psi(t); RealType zeta = -psi_deriv(t); RealType theta = -psi(-s); RealType xi = psi_deriv(-s); RealType p = result_type(1) / xi; RealType r = result_type(1) / zeta; RealType t_deriv = t - r * eta; RealType s_deriv = s - p * theta; RealType q = t_deriv + s_deriv; RealType u = result_type(0); RealType v = result_type(0); RealType w = result_type(0); RealType cand = result_type(0); do { u = uniform_01<RealType>()(urng); v = uniform_01<RealType>()(urng); w = uniform_01<RealType>()(urng); if (u < q / (p + q + r)) { cand = -s_deriv + q * v; } else if (u < (q + r) / (p + q + r)) { cand = t_deriv - r * log(v); } else { cand = -s_deriv + p * log(v); } } while (w * chi(cand, s, t, s_deriv, t_deriv, eta, zeta, theta, xi) > exp(psi(cand))); cand = (_abs_p / _omega + sqrt(result_type(1) + _abs_p * _abs_p / (_omega * _omega))) * exp(cand); return _p > 0 ? cand * sqrt(_b / _a) : sqrt(_b / _a) / cand; } /** * Returns a random variate distributed accordint to the beta * distribution with parameters specified by @c param. */ template<class URNG> result_type operator()(URNG& urng, const param_type& parm) const { return generalized_inverse_gaussian_distribution(parm)(urng); } /** Returns the "p" parameter of the distribution. */ RealType p() const { return _p; } /** Returns the "a" parameter of the distribution. */ RealType a() const { return _a; } /** Returns the "b" parameter of the distribution. */ RealType b() const { return _b; } /** Returns the smallest value that the distribution can produce. */ RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return RealType(0.0); } /** Returns the largest value that the distribution can produce. */ RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return (std::numeric_limits<RealType>::infinity)(); } /** Returns the parameters of the distribution. */ param_type param() const { return param_type(_p, _a, _b); } /** Sets the parameters of the distribution. */ void param(const param_type& parm) { _p = parm.p(); _a = parm.a(); _b = parm.b(); init(); } /** * Effects: Subsequent uses of the distribution do not depend * on values produced by any engine prior to invoking reset. */ void reset() { } /** Writes an @c generalized_inverse_gaussian_distribution to a @c std::ostream. */ BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, generalized_inverse_gaussian_distribution, wd) { os << wd.param(); return os; } /** Reads an @c generalized_inverse_gaussian_distribution from a @c std::istream. */ BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, generalized_inverse_gaussian_distribution, wd) { param_type parm; if(is >> parm) { wd.param(parm); } return is; } /** * Returns true if the two instances of @c generalized_inverse_gaussian_distribution will * return identical sequences of values given equal generators. */ BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(generalized_inverse_gaussian_distribution, lhs, rhs) { return lhs._p == rhs._p && lhs._a == rhs._a && lhs._b == rhs._b; } /** * Returns true if the two instances of @c generalized_inverse_gaussian_distribution will * return different sequences of values given equal generators. */ BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(generalized_inverse_gaussian_distribution) private: RealType _p; RealType _a; RealType _b; // some data precomputed from the parameters RealType _abs_p; RealType _omega; RealType _alpha; /// \cond hide_private_members void init() { #ifndef BOOST_NO_STDC_NAMESPACE using std::abs; using std::sqrt; #endif _abs_p = abs(_p); _omega = sqrt(_a * _b); // two-parameter representation (p, omega) _alpha = sqrt(_omega * _omega + _abs_p * _abs_p) - _abs_p; } result_type psi(const RealType& x) const { #ifndef BOOST_NO_STDC_NAMESPACE using std::cosh; using std::exp; #endif return -_alpha * (cosh(x) - result_type(1)) - _abs_p * (exp(x) - x - result_type(1)); } result_type psi_deriv(const RealType& x) const { #ifndef BOOST_NO_STDC_NAMESPACE using std::sinh; using std::exp; #endif return -_alpha * sinh(x) - _abs_p * (exp(x) - result_type(1)); } static result_type chi(const RealType& x, const RealType& s, const RealType& t, const RealType& s_deriv, const RealType& t_deriv, const RealType& eta, const RealType& zeta, const RealType& theta, const RealType& xi) { #ifndef BOOST_NO_STDC_NAMESPACE using std::exp; #endif if (x >= -s_deriv && x <= t_deriv) { return result_type(1); } else if (x > t_deriv) { return exp(-eta - zeta * (x - t)); } return exp(-theta + xi * (x + s)); } /// \endcond }; } // namespace random using random::generalized_inverse_gaussian_distribution; } // namespace boost #endif // BOOST_GENERALIZED_RANDOM_INVERSE_GAUSSIAN_DISTRIBUTION_HPP