boost/interprocess/containers/flat_set.hpp
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTERPROCESS_FLAT_SET_HPP #define BOOST_INTERPROCESS_FLAT_SET_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include <boost/interprocess/detail/config_begin.hpp> #include <boost/interprocess/detail/workaround.hpp> #include <boost/interprocess/interprocess_fwd.hpp> #include <utility> #include <functional> #include <memory> #include <boost/interprocess/containers/detail/flat_tree.hpp> #include <boost/interprocess/detail/mpl.hpp> #include <boost/interprocess/detail/move.hpp> namespace boost { namespace interprocess { /// @cond // Forward declarations of operators < and ==, needed for friend declaration. template <class T, class Pred, class Alloc> class flat_set; template <class T, class Pred, class Alloc> inline bool operator==(const flat_set<T,Pred,Alloc>& x, const flat_set<T,Pred,Alloc>& y); template <class T, class Pred, class Alloc> inline bool operator<(const flat_set<T,Pred,Alloc>& x, const flat_set<T,Pred,Alloc>& y); /// @endcond //! flat_set is a Sorted Associative Container that stores objects of type Key. //! flat_set is a Simple Associative Container, meaning that its value type, //! as well as its key type, is Key. It is also a Unique Associative Container, //! meaning that no two elements are the same. //! //! flat_set is similar to std::set but it's implemented like an ordered vector. //! This means that inserting a new element into a flat_set invalidates //! previous iterators and references //! //! Erasing an element of a flat_set invalidates iterators and references //! pointing to elements that come after (their keys are bigger) the erased element. template <class T, class Pred, class Alloc> class flat_set { /// @cond private: typedef detail::flat_tree<T, T, detail::identity<T>, Pred, Alloc> tree_t; tree_t m_flat_tree; // flat tree representing flat_set /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef typename tree_t::key_compare key_compare; typedef typename tree_t::value_compare value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! <b>Effects</b>: Constructs an empty flat_map using the specified //! comparison object and allocator. //! //! <b>Complexity</b>: Constant. explicit flat_set(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) {} //! <b>Effects</b>: Constructs an empty map using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template <class InputIterator> flat_set(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) { m_flat_tree.insert_unique(first, last); } //! <b>Effects</b>: Copy constructs a map. //! //! <b>Complexity</b>: Linear in x.size(). flat_set(const flat_set<T,Pred,Alloc>& x) : m_flat_tree(x.m_flat_tree) {} //! <b>Effects</b>: Move constructs a map. Constructs *this using x's resources. //! //! <b>Complexity</b>: Construct. //! //! <b>Postcondition</b>: x is emptied. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) flat_set(detail::moved_object<flat_set<T,Pred,Alloc> > mx) : m_flat_tree(detail::move_impl(mx.get().m_flat_tree)) {} #else flat_set(flat_set<T,Pred,Alloc> && mx) : m_flat_tree(detail::move_impl(mx.m_flat_tree)) {} #endif //! <b>Effects</b>: Makes *this a copy of x. //! //! <b>Complexity</b>: Linear in x.size(). flat_set<T,Pred,Alloc>& operator=(const flat_set<T, Pred, Alloc>& x) { m_flat_tree = x.m_flat_tree; return *this; } //! <b>Effects</b>: Makes *this a copy of x. //! //! <b>Complexity</b>: Linear in x.size(). #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) flat_set<T,Pred,Alloc>& operator=(detail::moved_object<flat_set<T, Pred, Alloc> > mx) { m_flat_tree = detail::move_impl(mx.get().m_flat_tree); return *this; } #else flat_set<T,Pred,Alloc>& operator=(flat_set<T, Pred, Alloc> &&mx) { m_flat_tree = detail::move_impl(mx.m_flat_tree); return *this; } #endif //! <b>Effects</b>: Returns the comparison object out //! of which a was constructed. //! //! <b>Complexity</b>: Constant. key_compare key_comp() const { return m_flat_tree.key_comp(); } //! <b>Effects</b>: Returns an object of value_compare constructed out //! of the comparison object. //! //! <b>Complexity</b>: Constant. value_compare value_comp() const { return m_flat_tree.key_comp(); } //! <b>Effects</b>: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const { return m_flat_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_flat_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_flat_tree.get_stored_allocator(); } //! <b>Effects</b>: Returns an iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator begin() { return m_flat_tree.begin(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const { return m_flat_tree.begin(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const { return m_flat_tree.cbegin(); } //! <b>Effects</b>: Returns an iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() { return m_flat_tree.end(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const { return m_flat_tree.end(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const { return m_flat_tree.cend(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rbegin() { return m_flat_tree.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rbegin() const { return m_flat_tree.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crbegin() const { return m_flat_tree.crbegin(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rend() { return m_flat_tree.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rend() const { return m_flat_tree.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crend() const { return m_flat_tree.crend(); } //! <b>Effects</b>: Returns true if the container contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const { return m_flat_tree.empty(); } //! <b>Effects</b>: Returns the number of the elements contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const { return m_flat_tree.size(); } //! <b>Effects</b>: Returns the largest possible size of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //! <b>Effects</b>: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) void swap(detail::moved_object<flat_set> x) { this->swap(x.get()); } void swap(flat_set& x) #else void swap(flat_set &&x) #endif { m_flat_tree.swap(x.m_flat_tree); } //! <b>Effects</b>: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. std::pair<iterator,bool> insert(const value_type& x) { return m_flat_tree.insert_unique(x); } //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) std::pair<iterator,bool> insert(detail::moved_object<value_type> x) { return m_flat_tree.insert_unique(x); } #else std::pair<iterator,bool> insert(value_type && x) { return m_flat_tree.insert_unique(detail::move_impl(x)); } #endif //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. iterator insert(const_iterator position, const value_type& x) { return m_flat_tree.insert_unique(position, x); } //! <b>Effects</b>: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) iterator insert(const_iterator position, detail::moved_object<value_type> x) { return m_flat_tree.insert_unique(position, x); } #else iterator insert(const_iterator position, value_type && x) { return m_flat_tree.insert_unique(position, detail::move_impl(x)); } #endif //! <b>Requires</b>: i, j are not iterators into *this. //! //! <b>Effects</b>: inserts each element from the range [i,j) if and only //! if there is no element with key equivalent to the key of that element. //! //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j) //! search time plus N*size() insertion time. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class InputIterator> void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_unique(first, last); } #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... if and only if there is no element in the container //! with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class... Args> iterator emplace(Args&&... args) { return m_flat_tree.emplace_unique(detail::forward_impl<Args>(args)...); } //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class... Args> iterator emplace_hint(const_iterator hint, Args&&... args) { return m_flat_tree.emplace_hint_unique(hint, detail::forward_impl<Args>(args)...); } #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING iterator emplace() { return m_flat_tree.emplace_unique(); } iterator emplace_hint(const_iterator hint) { return m_flat_tree.emplace_hint_unique(hint); } #define BOOST_PP_LOCAL_MACRO(n) \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_unique(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \ \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_hint_unique(hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); }\ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING //! <b>Effects</b>: Erases the element pointed to by position. //! //! <b>Returns</b>: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! <b>Complexity</b>: Linear to the elements with keys bigger than position //! //! <b>Note</b>: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return m_flat_tree.erase(position); } //! <b>Effects</b>: Erases all elements in the container with key equivalent to x. //! //! <b>Returns</b>: Returns the number of erased elements. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! <b>Effects</b>: Erases all the elements in the range [first, last). //! //! <b>Returns</b>: Returns last. //! //! <b>Complexity</b>: size()*N where N is the distance from first to last. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return m_flat_tree.erase(first, last); } //! <b>Effects</b>: erase(a.begin(),a.end()). //! //! <b>Postcondition</b>: size() == 0. //! //! <b>Complexity</b>: linear in size(). void clear() { m_flat_tree.clear(); } //! <b>Effects</b>: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //! <b>Returns</b>: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. iterator find(const key_type& x) { return m_flat_tree.find(x); } //! <b>Returns</b>: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic.s const_iterator find(const key_type& x) const { return m_flat_tree.find(x); } //! <b>Returns</b>: The number of elements with key equivalent to x. //! //! <b>Complexity</b>: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator lower_bound(const key_type& x) { return m_flat_tree.lower_bound(x); } //! <b>Returns</b>: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_flat_tree.lower_bound(x); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator upper_bound(const key_type& x) { return m_flat_tree.upper_bound(x); } //! <b>Returns</b>: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_flat_tree.upper_bound(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<const_iterator, const_iterator> equal_range(const key_type& x) const { return m_flat_tree.equal_range(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<iterator,iterator> equal_range(const key_type& x) { return m_flat_tree.equal_range(x); } //! <b>Effects</b>: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws. //! //! <b>Note</b>: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template <class K1, class C1, class A1> friend bool operator== (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&); template <class K1, class C1, class A1> friend bool operator< (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&); /// @endcond }; template <class T, class Pred, class Alloc> inline bool operator==(const flat_set<T,Pred,Alloc>& x, const flat_set<T,Pred,Alloc>& y) { return x.m_flat_tree == y.m_flat_tree; } template <class T, class Pred, class Alloc> inline bool operator<(const flat_set<T,Pred,Alloc>& x, const flat_set<T,Pred,Alloc>& y) { return x.m_flat_tree < y.m_flat_tree; } template <class T, class Pred, class Alloc> inline bool operator!=(const flat_set<T,Pred,Alloc>& x, const flat_set<T,Pred,Alloc>& y) { return !(x == y); } template <class T, class Pred, class Alloc> inline bool operator>(const flat_set<T,Pred,Alloc>& x, const flat_set<T,Pred,Alloc>& y) { return y < x; } template <class T, class Pred, class Alloc> inline bool operator<=(const flat_set<T,Pred,Alloc>& x, const flat_set<T,Pred,Alloc>& y) { return !(y < x); } template <class T, class Pred, class Alloc> inline bool operator>=(const flat_set<T,Pred,Alloc>& x, const flat_set<T,Pred,Alloc>& y) { return !(x < y); } #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) template <class T, class Pred, class Alloc> inline void swap(flat_set<T,Pred,Alloc>& x, flat_set<T,Pred,Alloc>& y) { x.swap(y); } template <class T, class Pred, class Alloc> inline void swap(detail::moved_object<flat_set<T,Pred,Alloc> > x, flat_set<T,Pred,Alloc>& y) { x.get().swap(y); } template <class T, class Pred, class Alloc> inline void swap(flat_set<T,Pred,Alloc>& x, detail::moved_object<flat_set<T,Pred,Alloc> > y) { x.swap(y.get()); } #else template <class T, class Pred, class Alloc> inline void swap(flat_set<T,Pred,Alloc>&&x, flat_set<T,Pred,Alloc>&&y) { x.swap(y); } #endif /// @cond //!This class is movable template <class T, class P, class A> struct is_movable<flat_set<T, P, A> > { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class T, class C, class A> struct has_trivial_destructor_after_move<flat_set<T, C, A> > { enum { value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value }; }; // Forward declaration of operators < and ==, needed for friend declaration. template <class T, class Pred, class Alloc> class flat_multiset; template <class T, class Pred, class Alloc> inline bool operator==(const flat_multiset<T,Pred,Alloc>& x, const flat_multiset<T,Pred,Alloc>& y); template <class T, class Pred, class Alloc> inline bool operator<(const flat_multiset<T,Pred,Alloc>& x, const flat_multiset<T,Pred,Alloc>& y); /// @endcond //! flat_multiset is a Sorted Associative Container that stores objects of type Key. //! flat_multiset is a Simple Associative Container, meaning that its value type, //! as well as its key type, is Key. //! flat_Multiset can store multiple copies of the same key value. //! //! flat_multiset is similar to std::multiset but it's implemented like an ordered vector. //! This means that inserting a new element into a flat_multiset invalidates //! previous iterators and references //! //! Erasing an element of a flat_multiset invalidates iterators and references //! pointing to elements that come after (their keys are equal or bigger) the erased element. template <class T, class Pred, class Alloc> class flat_multiset { /// @cond private: typedef detail::flat_tree<T, T, detail::identity<T>, Pred, Alloc> tree_t; tree_t m_flat_tree; // flat tree representing flat_multiset /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef typename tree_t::key_compare key_compare; typedef typename tree_t::value_compare value_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; // allocation/deallocation explicit flat_multiset(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) {} template <class InputIterator> flat_multiset(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, a) { m_flat_tree.insert_equal(first, last); } flat_multiset(const flat_multiset<T,Pred,Alloc>& x) : m_flat_tree(x.m_flat_tree) {} #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) flat_multiset(detail::moved_object<flat_multiset<T,Pred,Alloc> > x) : m_flat_tree(detail::move_impl(x.get().m_flat_tree)) {} #else flat_multiset(flat_multiset<T,Pred,Alloc> && x) : m_flat_tree(detail::move_impl(x.m_flat_tree)) {} #endif flat_multiset<T,Pred,Alloc>& operator=(const flat_multiset<T,Pred,Alloc>& x) { m_flat_tree = x.m_flat_tree; return *this; } #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) flat_multiset<T,Pred,Alloc>& operator=(detail::moved_object<flat_multiset<T,Pred,Alloc> > mx) { m_flat_tree = detail::move_impl(mx.get().m_flat_tree); return *this; } #else flat_multiset<T,Pred,Alloc>& operator=(flat_multiset<T,Pred,Alloc> && mx) { m_flat_tree = detail::move_impl(mx.m_flat_tree); return *this; } #endif //! <b>Effects</b>: Returns the comparison object out //! of which a was constructed. //! //! <b>Complexity</b>: Constant. key_compare key_comp() const { return m_flat_tree.key_comp(); } //! <b>Effects</b>: Returns an object of value_compare constructed out //! of the comparison object. //! //! <b>Complexity</b>: Constant. value_compare value_comp() const { return m_flat_tree.key_comp(); } //! <b>Effects</b>: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const { return m_flat_tree.get_allocator(); } const stored_allocator_type &get_stored_allocator() const { return m_flat_tree.get_stored_allocator(); } stored_allocator_type &get_stored_allocator() { return m_flat_tree.get_stored_allocator(); } //! <b>Effects</b>: Returns an iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator begin() { return m_flat_tree.begin(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const { return m_flat_tree.begin(); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const { return m_flat_tree.cbegin(); } //! <b>Effects</b>: Returns an iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() { return m_flat_tree.end(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const { return m_flat_tree.end(); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const { return m_flat_tree.cend(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rbegin() { return m_flat_tree.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rbegin() const { return m_flat_tree.rbegin(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crbegin() const { return m_flat_tree.crbegin(); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rend() { return m_flat_tree.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rend() const { return m_flat_tree.rend(); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crend() const { return m_flat_tree.crend(); } //! <b>Effects</b>: Returns true if the container contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const { return m_flat_tree.empty(); } //! <b>Effects</b>: Returns the number of the elements contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const { return m_flat_tree.size(); } //! <b>Effects</b>: Returns the largest possible size of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //! <b>Effects</b>: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) void swap(detail::moved_object<flat_multiset> x) { this->swap(x.get()); } void swap(flat_multiset& x) #else void swap(flat_multiset &&x) #endif { m_flat_tree.swap(x.m_flat_tree); } //! <b>Effects</b>: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. iterator insert(const value_type& x) { return m_flat_tree.insert_equal(x); } //! <b>Effects</b>: Inserts a new value_type move constructed from x //! and returns the iterator pointing to the newly inserted element. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) iterator insert(detail::moved_object<value_type> x) { return m_flat_tree.insert_equal(x); } #else iterator insert(value_type && x) { return m_flat_tree.insert_equal(detail::move_impl(x)); } #endif //! <b>Effects</b>: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. iterator insert(const_iterator position, const value_type& x) { return m_flat_tree.insert_equal(position, x); } //! <b>Effects</b>: Inserts a new value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) iterator insert(const_iterator position, detail::moved_object<value_type> x) { return m_flat_tree.insert_equal(position, x); } #else iterator insert(const_iterator position, value_type && x) { return m_flat_tree.insert_equal(position, detail::move_impl(x)); } #endif //! <b>Requires</b>: i, j are not iterators into *this. //! //! <b>Effects</b>: inserts each element from the range [i,j) . //! //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j) //! search time plus N*size() insertion time. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class InputIterator> void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_equal(first, last); } #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... and returns the iterator pointing to the //! newly inserted element. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class... Args> iterator emplace(Args&&... args) { return m_flat_tree.emplace_equal(detail::forward_impl<Args>(args)...); } //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class... Args> iterator emplace_hint(const_iterator hint, Args&&... args) { return m_flat_tree.emplace_hint_equal(hint, detail::forward_impl<Args>(args)...); } #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING iterator emplace() { return m_flat_tree.emplace_equal(); } iterator emplace_hint(const_iterator hint) { return m_flat_tree.emplace_hint_equal(hint); } #define BOOST_PP_LOCAL_MACRO(n) \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_equal(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \ \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \ { return m_flat_tree.emplace_hint_equal(hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _)); } \ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING //! <b>Effects</b>: Erases the element pointed to by position. //! //! <b>Returns</b>: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! <b>Complexity</b>: Linear to the elements with keys bigger than position //! //! <b>Note</b>: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return m_flat_tree.erase(position); } //! <b>Effects</b>: Erases all elements in the container with key equivalent to x. //! //! <b>Returns</b>: Returns the number of erased elements. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! <b>Effects</b>: Erases all the elements in the range [first, last). //! //! <b>Returns</b>: Returns last. //! //! <b>Complexity</b>: size()*N where N is the distance from first to last. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return m_flat_tree.erase(first, last); } //! <b>Effects</b>: erase(a.begin(),a.end()). //! //! <b>Postcondition</b>: size() == 0. //! //! <b>Complexity</b>: linear in size(). void clear() { m_flat_tree.clear(); } //! <b>Effects</b>: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //! <b>Returns</b>: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. iterator find(const key_type& x) { return m_flat_tree.find(x); } //! <b>Returns</b>: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic.s const_iterator find(const key_type& x) const { return m_flat_tree.find(x); } //! <b>Returns</b>: The number of elements with key equivalent to x. //! //! <b>Complexity</b>: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.count(x); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator lower_bound(const key_type& x) { return m_flat_tree.lower_bound(x); } //! <b>Returns</b>: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator lower_bound(const key_type& x) const { return m_flat_tree.lower_bound(x); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator upper_bound(const key_type& x) { return m_flat_tree.upper_bound(x); } //! <b>Returns</b>: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator upper_bound(const key_type& x) const { return m_flat_tree.upper_bound(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<const_iterator, const_iterator> equal_range(const key_type& x) const { return m_flat_tree.equal_range(x); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<iterator,iterator> equal_range(const key_type& x) { return m_flat_tree.equal_range(x); } //! <b>Effects</b>: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws. //! //! <b>Note</b>: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template <class K1, class C1, class A1> friend bool operator== (const flat_multiset<K1,C1,A1>&, const flat_multiset<K1,C1,A1>&); template <class K1, class C1, class A1> friend bool operator< (const flat_multiset<K1,C1,A1>&, const flat_multiset<K1,C1,A1>&); /// @endcond }; template <class T, class Pred, class Alloc> inline bool operator==(const flat_multiset<T,Pred,Alloc>& x, const flat_multiset<T,Pred,Alloc>& y) { return x.m_flat_tree == y.m_flat_tree; } template <class T, class Pred, class Alloc> inline bool operator<(const flat_multiset<T,Pred,Alloc>& x, const flat_multiset<T,Pred,Alloc>& y) { return x.m_flat_tree < y.m_flat_tree; } template <class T, class Pred, class Alloc> inline bool operator!=(const flat_multiset<T,Pred,Alloc>& x, const flat_multiset<T,Pred,Alloc>& y) { return !(x == y); } template <class T, class Pred, class Alloc> inline bool operator>(const flat_multiset<T,Pred,Alloc>& x, const flat_multiset<T,Pred,Alloc>& y) { return y < x; } template <class T, class Pred, class Alloc> inline bool operator<=(const flat_multiset<T,Pred,Alloc>& x, const flat_multiset<T,Pred,Alloc>& y) { return !(y < x); } template <class T, class Pred, class Alloc> inline bool operator>=(const flat_multiset<T,Pred,Alloc>& x, const flat_multiset<T,Pred,Alloc>& y) { return !(x < y); } #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) template <class T, class Pred, class Alloc> inline void swap(flat_multiset<T,Pred,Alloc>& x, flat_multiset<T,Pred,Alloc>& y) { x.swap(y); } template <class T, class Pred, class Alloc> inline void swap(detail::moved_object<flat_multiset<T,Pred,Alloc> > x, flat_multiset<T,Pred,Alloc>& y) { x.get().swap(y); } template <class T, class Pred, class Alloc> inline void swap(flat_multiset<T,Pred,Alloc>& x, detail::moved_object<flat_multiset<T,Pred,Alloc> > y) { x.swap(y.get()); } #else template <class T, class Pred, class Alloc> inline void swap(flat_multiset<T,Pred,Alloc>&&x, flat_multiset<T,Pred,Alloc>&&y) { x.swap(y); } #endif /// @cond //!This class is movable template <class T, class P, class A> struct is_movable<flat_multiset<T, P, A> > { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class T, class C, class A> struct has_trivial_destructor_after_move<flat_multiset<T, C, A> > { enum { value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value }; }; /// @endcond }} //namespace boost { namespace interprocess { #include <boost/interprocess/detail/config_end.hpp> #endif /* BOOST_INTERPROCESS_FLAT_SET_HPP */