boost/interprocess/containers/flat_map.hpp
////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/interprocess for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTERPROCESS_FLAT_MAP_HPP #define BOOST_INTERPROCESS_FLAT_MAP_HPP #if (defined _MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif #include <boost/interprocess/detail/config_begin.hpp> #include <boost/interprocess/detail/workaround.hpp> #include <boost/interprocess/interprocess_fwd.hpp> #include <utility> #include <functional> #include <memory> #include <stdexcept> #include <boost/interprocess/containers/detail/flat_tree.hpp> #include <boost/interprocess/detail/utilities.hpp> #include <boost/type_traits/has_trivial_destructor.hpp> #include <boost/interprocess/detail/mpl.hpp> #include <boost/interprocess/detail/move.hpp> namespace boost { namespace interprocess { /// @cond // Forward declarations of operators == and <, needed for friend declarations. template <class Key, class T, class Pred, class Alloc> class flat_map; template <class Key, class T, class Pred, class Alloc> inline bool operator==(const flat_map<Key,T,Pred,Alloc>& x, const flat_map<Key,T,Pred,Alloc>& y); template <class Key, class T, class Pred, class Alloc> inline bool operator<(const flat_map<Key,T,Pred,Alloc>& x, const flat_map<Key,T,Pred,Alloc>& y); /// @endcond //! A flat_map is a kind of associative container that supports unique keys (contains at //! most one of each key value) and provides for fast retrieval of values of another //! type T based on the keys. The flat_map class supports random-access iterators. //! //! A flat_map satisfies all of the requirements of a container and of a reversible //! container and of an associative container. A flat_map also provides //! most operations described for unique keys. For a //! flat_map<Key,T> the key_type is Key and the value_type is std::pair<Key,T> //! (unlike std::map<Key, T> which value_type is std::pair<<b>const</b> Key, T>). //! //! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>). //! //! Alloc is the allocator to allocate the value_types //! (e.g. <i>boost::interprocess:allocator< std::pair<Key, T></i>). //! //! flat_map is similar to std::map but it's implemented like an ordered vector. //! This means that inserting a new element into a flat_map invalidates //! previous iterators and references //! //! Erasing an element of a flat_map invalidates iterators and references //! pointing to elements that come after (their keys are bigger) the erased element. template <class Key, class T, class Pred, class Alloc> class flat_map { /// @cond private: //This is the tree that we should store if pair was movable typedef detail::flat_tree<Key, std::pair<Key, T>, detail::select1st< std::pair<Key, T> >, Pred, Alloc> tree_t; //#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE //This is the real tree stored here. It's based on a movable pair typedef detail::flat_tree<Key, detail::pair<Key, T>, detail::select1st< detail::pair<Key, T> >, Pred, typename Alloc::template rebind<detail::pair<Key, T> >::other> impl_tree_t; /* #else typedef tree_t impl_tree_t; #endif */ impl_tree_t m_flat_tree; // flat tree representing flat_map typedef typename impl_tree_t::value_type impl_value_type; typedef typename impl_tree_t::pointer impl_pointer; typedef typename impl_tree_t::const_pointer impl_const_pointer; typedef typename impl_tree_t::reference impl_reference; typedef typename impl_tree_t::const_reference impl_const_reference; typedef typename impl_tree_t::value_compare impl_value_compare; typedef typename impl_tree_t::iterator impl_iterator; typedef typename impl_tree_t::const_iterator impl_const_iterator; typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator; typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator; typedef typename impl_tree_t::allocator_type impl_allocator_type; #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE typedef detail::moved_object<impl_value_type> impl_moved_value_type; #endif //#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template<class D, class S> static D &force(const S &s) { return *const_cast<D*>(reinterpret_cast<const D*>(&s)); } template<class D, class S> static D force_copy(S s) { value_type *vp = reinterpret_cast<value_type *>(&*s); return D(vp); } /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef typename tree_t::value_compare value_compare; typedef T mapped_type; typedef typename tree_t::key_compare key_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! <b>Effects</b>: Constructs an empty flat_map using the specified //! comparison object and allocator. //! //! <b>Complexity</b>: Constant. explicit flat_map(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, force<impl_allocator_type>(a)) {} //! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and //! allocator, and inserts elements from the range [first ,last ). //! //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template <class InputIterator> flat_map(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, force<impl_allocator_type>(a)) { m_flat_tree.insert_unique(first, last); } //! <b>Effects</b>: Copy constructs a flat_map. //! //! <b>Complexity</b>: Linear in x.size(). flat_map(const flat_map<Key,T,Pred,Alloc>& x) : m_flat_tree(x.m_flat_tree) {} //! <b>Effects</b>: Move constructs a flat_map. //! Constructs *this using x's resources. //! //! <b>Complexity</b>: Construct. //! //! <b>Postcondition</b>: x is emptied. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) flat_map(detail::moved_object<flat_map<Key,T,Pred,Alloc> > x) : m_flat_tree(detail::move_impl(x.get().m_flat_tree)) {} #else flat_map(flat_map<Key,T,Pred,Alloc> && x) : m_flat_tree(detail::move_impl(x.m_flat_tree)) {} #endif //! <b>Effects</b>: Makes *this a copy of x. //! //! <b>Complexity</b>: Linear in x.size(). flat_map<Key,T,Pred,Alloc>& operator=(const flat_map<Key, T, Pred, Alloc>& x) { m_flat_tree = x.m_flat_tree; return *this; } //! <b>Effects</b>: Move constructs a flat_map. //! Constructs *this using x's resources. //! //! <b>Complexity</b>: Construct. //! //! <b>Postcondition</b>: x is emptied. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) flat_map<Key,T,Pred,Alloc>& operator=(detail::moved_object<flat_map<Key, T, Pred, Alloc> > mx) { m_flat_tree = detail::move_impl(mx.get().m_flat_tree); return *this; } #else flat_map<Key,T,Pred,Alloc>& operator=(flat_map<Key, T, Pred, Alloc> && mx) { m_flat_tree = detail::move_impl(mx.m_flat_tree); return *this; } #endif //! <b>Effects</b>: Returns the comparison object out //! of which a was constructed. //! //! <b>Complexity</b>: Constant. key_compare key_comp() const { return force<key_compare>(m_flat_tree.key_comp()); } //! <b>Effects</b>: Returns an object of value_compare constructed out //! of the comparison object. //! //! <b>Complexity</b>: Constant. value_compare value_comp() const { return value_compare(force<key_compare>(m_flat_tree.key_comp())); } //! <b>Effects</b>: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const { return force<allocator_type>(m_flat_tree.get_allocator()); } const stored_allocator_type &get_stored_allocator() const { return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); } stored_allocator_type &get_stored_allocator() { return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); } //! <b>Effects</b>: Returns an iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator begin() { return force_copy<iterator>(m_flat_tree.begin()); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const { return force<const_iterator>(m_flat_tree.begin()); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const { return force<const_iterator>(m_flat_tree.cbegin()); } //! <b>Effects</b>: Returns an iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() { return force_copy<iterator>(m_flat_tree.end()); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const { return force<const_iterator>(m_flat_tree.end()); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const { return force<const_iterator>(m_flat_tree.cend()); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rbegin() { return force<reverse_iterator>(m_flat_tree.rbegin()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rbegin() const { return force<const_reverse_iterator>(m_flat_tree.rbegin()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crbegin() const { return force<const_reverse_iterator>(m_flat_tree.crbegin()); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rend() { return force<reverse_iterator>(m_flat_tree.rend()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rend() const { return force<const_reverse_iterator>(m_flat_tree.rend()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crend() const { return force<const_reverse_iterator>(m_flat_tree.crend()); } //! <b>Effects</b>: Returns true if the container contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const { return m_flat_tree.empty(); } //! <b>Effects</b>: Returns the number of the elements contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const { return m_flat_tree.size(); } //! <b>Effects</b>: Returns the largest possible size of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //! Effects: If there is no key equivalent to x in the flat_map, inserts //! value_type(x, T()) into the flat_map. //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. T &operator[](const key_type& k) { iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)) i = insert(i, value_type(k, T())); return (*i).second; } //! Effects: If there is no key equivalent to x in the flat_map, inserts //! value_type(move(x), T()) into the flat_map (the key is move-constructed) //! //! Returns: A reference to the mapped_type corresponding to x in *this. //! //! Complexity: Logarithmic. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) T &operator[](detail::moved_object<key_type> mk) { key_type &k = mk.get(); iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)) i = insert(i, value_type(k, detail::move_impl(T()))); return (*i).second; } #else T &operator[](key_type &&mk) { key_type &k = mk; iterator i = lower_bound(k); // i->first is greater than or equivalent to k. if (i == end() || key_comp()(k, (*i).first)) i = insert(i, value_type(detail::forward_impl<key_type>(k), detail::move_impl(T()))); return (*i).second; } #endif //! Returns: A reference to the element whose key is equivalent to x. //! Throws: An exception object of type out_of_range if no such element is present. //! Complexity: logarithmic. T& at(const key_type& k) { iterator i = this->find(k); if(i == this->end()){ throw std::out_of_range("key not found"); } return i->second; } //! Returns: A reference to the element whose key is equivalent to x. //! Throws: An exception object of type out_of_range if no such element is present. //! Complexity: logarithmic. const T& at(const key_type& k) const { const_iterator i = this->find(k); if(i == this->end()){ throw std::out_of_range("key not found"); } return i->second; } //! <b>Effects</b>: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) void swap(detail::moved_object<flat_map> x) { this->swap(x.get()); } void swap(flat_map& x) #else void swap(flat_map &&x) #endif { m_flat_tree.swap(x.m_flat_tree); } //! <b>Effects</b>: Inserts x if and only if there is no element in the container //! with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. std::pair<iterator,bool> insert(const value_type& x) { return force<std::pair<iterator,bool> >( m_flat_tree.insert_unique(force<impl_value_type>(x))); } //! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and //! only if there is no element in the container with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) std::pair<iterator,bool> insert(detail::moved_object<value_type> x) { return force<std::pair<iterator,bool> >( m_flat_tree.insert_unique(force<impl_moved_value_type>(x))); } #else std::pair<iterator,bool> insert(value_type &&x) { return force<std::pair<iterator,bool> >( m_flat_tree.insert_unique(detail::move_impl(force<impl_value_type>(x)))); } #endif //! <b>Effects</b>: Inserts a copy of x in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. iterator insert(const_iterator position, const value_type& x) { return force_copy<iterator>( m_flat_tree.insert_unique(force<impl_const_iterator>(position), force<impl_value_type>(x))); } //! <b>Effects</b>: Inserts an element move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) iterator insert(const_iterator position, detail::moved_object<value_type> x) { return force_copy<iterator>( m_flat_tree.insert_unique(force<impl_const_iterator>(position), force<impl_moved_value_type>(x))); } #else iterator insert(const_iterator position, value_type &&x) { return force_copy<iterator>( m_flat_tree.insert_unique(force<impl_const_iterator>(position), detail::move_impl(force<impl_value_type>(x)))); } #endif //! <b>Requires</b>: i, j are not iterators into *this. //! //! <b>Effects</b>: inserts each element from the range [i,j) if and only //! if there is no element with key equivalent to the key of that element. //! //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j) //! search time plus N*size() insertion time. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class InputIterator> void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_unique(first, last); } #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... if and only if there is no element in the container //! with key equivalent to the key of x. //! //! <b>Returns</b>: The bool component of the returned pair is true if and only //! if the insertion takes place, and the iterator component of the pair //! points to the element with key equivalent to the key of x. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class... Args> iterator emplace(Args&&... args) { return force_copy<iterator>(m_flat_tree.emplace_unique(detail::forward_impl<Args>(args)...)); } //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... in the container if and only if there is //! no element in the container with key equivalent to the key of x. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant if x is inserted //! right before p) plus insertion linear to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class... Args> iterator emplace_hint(const_iterator hint, Args&&... args) { return force_copy<iterator>(m_flat_tree.emplace_hint_unique(force<impl_const_iterator>(hint), detail::forward_impl<Args>(args)...)); } #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING iterator emplace() { return force_copy<iterator>(m_flat_tree.emplace_unique()); } iterator emplace_hint(const_iterator hint) { return force_copy<iterator>(m_flat_tree.emplace_hint_unique(force<impl_const_iterator>(hint))); } #define BOOST_PP_LOCAL_MACRO(n) \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \ { \ return force_copy<iterator>(m_flat_tree.emplace_unique \ (BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \ } \ \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \ { \ return force_copy<iterator>(m_flat_tree.emplace_hint_unique \ (force<impl_const_iterator>(hint), \ BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \ } \ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING //! <b>Effects</b>: Erases the element pointed to by position. //! //! <b>Returns</b>: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! <b>Complexity</b>: Linear to the elements with keys bigger than position //! //! <b>Note</b>: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(position))); } //! <b>Effects</b>: Erases all elements in the container with key equivalent to x. //! //! <b>Returns</b>: Returns the number of erased elements. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! <b>Effects</b>: Erases all the elements in the range [first, last). //! //! <b>Returns</b>: Returns last. //! //! <b>Complexity</b>: size()*N where N is the distance from first to last. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(first), force<impl_const_iterator>(last))); } //! <b>Effects</b>: erase(a.begin(),a.end()). //! //! <b>Postcondition</b>: size() == 0. //! //! <b>Complexity</b>: linear in size(). void clear() { m_flat_tree.clear(); } //! <b>Effects</b>: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //! <b>Returns</b>: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. iterator find(const key_type& x) { return force_copy<iterator>(m_flat_tree.find(x)); } //! <b>Returns</b>: A const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic.s const_iterator find(const key_type& x) const { return force<const_iterator>(m_flat_tree.find(x)); } //! <b>Returns</b>: The number of elements with key equivalent to x. //! //! <b>Complexity</b>: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator lower_bound(const key_type& x) { return force_copy<iterator>(m_flat_tree.lower_bound(x)); } //! <b>Returns</b>: A const iterator pointing to the first element with key not //! less than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator lower_bound(const key_type& x) const { return force<const_iterator>(m_flat_tree.lower_bound(x)); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator upper_bound(const key_type& x) { return force_copy<iterator>(m_flat_tree.upper_bound(x)); } //! <b>Returns</b>: A const iterator pointing to the first element with key not //! less than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator upper_bound(const key_type& x) const { return force<const_iterator>(m_flat_tree.upper_bound(x)); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<iterator,iterator> equal_range(const key_type& x) { return force<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const { return force<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); } //! <b>Effects</b>: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws. //! //! <b>Note</b>: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template <class K1, class T1, class C1, class A1> friend bool operator== (const flat_map<K1, T1, C1, A1>&, const flat_map<K1, T1, C1, A1>&); template <class K1, class T1, class C1, class A1> friend bool operator< (const flat_map<K1, T1, C1, A1>&, const flat_map<K1, T1, C1, A1>&); /// @endcond }; template <class Key, class T, class Pred, class Alloc> inline bool operator==(const flat_map<Key,T,Pred,Alloc>& x, const flat_map<Key,T,Pred,Alloc>& y) { return x.m_flat_tree == y.m_flat_tree; } template <class Key, class T, class Pred, class Alloc> inline bool operator<(const flat_map<Key,T,Pred,Alloc>& x, const flat_map<Key,T,Pred,Alloc>& y) { return x.m_flat_tree < y.m_flat_tree; } template <class Key, class T, class Pred, class Alloc> inline bool operator!=(const flat_map<Key,T,Pred,Alloc>& x, const flat_map<Key,T,Pred,Alloc>& y) { return !(x == y); } template <class Key, class T, class Pred, class Alloc> inline bool operator>(const flat_map<Key,T,Pred,Alloc>& x, const flat_map<Key,T,Pred,Alloc>& y) { return y < x; } template <class Key, class T, class Pred, class Alloc> inline bool operator<=(const flat_map<Key,T,Pred,Alloc>& x, const flat_map<Key,T,Pred,Alloc>& y) { return !(y < x); } template <class Key, class T, class Pred, class Alloc> inline bool operator>=(const flat_map<Key,T,Pred,Alloc>& x, const flat_map<Key,T,Pred,Alloc>& y) { return !(x < y); } #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) template <class Key, class T, class Pred, class Alloc> inline void swap(flat_map<Key,T,Pred,Alloc>& x, flat_map<Key,T,Pred,Alloc>& y) { x.swap(y); } template <class Key, class T, class Pred, class Alloc> inline void swap(detail::moved_object<flat_map<Key,T,Pred,Alloc> > x, flat_map<Key,T,Pred,Alloc>& y) { x.get().swap(y); } template <class Key, class T, class Pred, class Alloc> inline void swap(flat_map<Key,T,Pred,Alloc>& x, detail::moved_object<flat_map<Key,T,Pred,Alloc> > y) { x.swap(y.get()); } #else template <class Key, class T, class Pred, class Alloc> inline void swap(flat_map<Key,T,Pred,Alloc>&&x, flat_map<Key,T,Pred,Alloc>&&y) { x.swap(y); } #endif /// @cond //!This class is movable template <class K, class T, class C, class A> struct is_movable<flat_map<K, T, C, A> > { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class K, class T, class C, class A> struct has_trivial_destructor_after_move<flat_map<K, T, C, A> > { enum { value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value }; }; // Forward declaration of operators < and ==, needed for friend declaration. template <class Key, class T, class Pred, class Alloc> class flat_multimap; template <class Key, class T, class Pred, class Alloc> inline bool operator==(const flat_multimap<Key,T,Pred,Alloc>& x, const flat_multimap<Key,T,Pred,Alloc>& y); template <class Key, class T, class Pred, class Alloc> inline bool operator<(const flat_multimap<Key,T,Pred,Alloc>& x, const flat_multimap<Key,T,Pred,Alloc>& y); /// @endcond //! A flat_multimap is a kind of associative container that supports equivalent keys //! (possibly containing multiple copies of the same key value) and provides for //! fast retrieval of values of another type T based on the keys. The flat_multimap //! class supports random-access iterators. //! //! A flat_multimap satisfies all of the requirements of a container and of a reversible //! container and of an associative container. For a //! flat_multimap<Key,T> the key_type is Key and the value_type is std::pair<Key,T> //! (unlike std::multimap<Key, T> which value_type is std::pair<<b>const</b> Key, T>). //! //! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>). //! //! Alloc is the allocator to allocate the value_types //! (e.g. <i>boost::interprocess:allocator< std::pair<Key, T></i>). template <class Key, class T, class Pred, class Alloc> class flat_multimap { /// @cond private: typedef detail::flat_tree<Key, std::pair<Key, T>, detail::select1st< std::pair<Key, T> >, Pred, Alloc> tree_t; //#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE //This is the real tree stored here. It's based on a movable pair typedef detail::flat_tree<Key, detail::pair<Key, T>, detail::select1st< detail::pair<Key, T> >, Pred, typename Alloc::template rebind<detail::pair<Key, T> >::other> impl_tree_t; /* #else typedef tree_t impl_tree_t; #endif */ impl_tree_t m_flat_tree; // flat tree representing flat_map typedef typename impl_tree_t::value_type impl_value_type; typedef typename impl_tree_t::pointer impl_pointer; typedef typename impl_tree_t::const_pointer impl_const_pointer; typedef typename impl_tree_t::reference impl_reference; typedef typename impl_tree_t::const_reference impl_const_reference; typedef typename impl_tree_t::value_compare impl_value_compare; typedef typename impl_tree_t::iterator impl_iterator; typedef typename impl_tree_t::const_iterator impl_const_iterator; typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator; typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator; typedef typename impl_tree_t::allocator_type impl_allocator_type; #ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE typedef detail::moved_object<impl_value_type> impl_moved_value_type; #endif //#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE template<class D, class S> static D &force(const S &s) { return *const_cast<D*>((reinterpret_cast<const D*>(&s))); } template<class D, class S> static D force_copy(S s) { value_type *vp = reinterpret_cast<value_type *>(&*s); return D(vp); } /// @endcond public: // typedefs: typedef typename tree_t::key_type key_type; typedef typename tree_t::value_type value_type; typedef typename tree_t::pointer pointer; typedef typename tree_t::const_pointer const_pointer; typedef typename tree_t::reference reference; typedef typename tree_t::const_reference const_reference; typedef typename tree_t::value_compare value_compare; typedef T mapped_type; typedef typename tree_t::key_compare key_compare; typedef typename tree_t::iterator iterator; typedef typename tree_t::const_iterator const_iterator; typedef typename tree_t::reverse_iterator reverse_iterator; typedef typename tree_t::const_reverse_iterator const_reverse_iterator; typedef typename tree_t::size_type size_type; typedef typename tree_t::difference_type difference_type; typedef typename tree_t::allocator_type allocator_type; typedef typename tree_t::stored_allocator_type stored_allocator_type; //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison //! object and allocator. //! //! <b>Complexity</b>: Constant. explicit flat_multimap(const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, force<impl_allocator_type>(a)) { } //! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object //! and allocator, and inserts elements from the range [first ,last ). //! //! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using //! comp and otherwise N logN, where N is last - first. template <class InputIterator> flat_multimap(InputIterator first, InputIterator last, const Pred& comp = Pred(), const allocator_type& a = allocator_type()) : m_flat_tree(comp, force<impl_allocator_type>(a)) { m_flat_tree.insert_equal(first, last); } //! <b>Effects</b>: Copy constructs a flat_multimap. //! //! <b>Complexity</b>: Linear in x.size(). flat_multimap(const flat_multimap<Key,T,Pred,Alloc>& x) : m_flat_tree(x.m_flat_tree) { } //! <b>Effects</b>: Move constructs a flat_multimap. Constructs *this using x's resources. //! //! <b>Complexity</b>: Construct. //! //! <b>Postcondition</b>: x is emptied. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) flat_multimap(detail::moved_object<flat_multimap<Key,T,Pred,Alloc> > x) : m_flat_tree(detail::move_impl(x.get().m_flat_tree)) { } #else flat_multimap(flat_multimap<Key,T,Pred,Alloc> && x) : m_flat_tree(detail::move_impl(x.m_flat_tree)) { } #endif //! <b>Effects</b>: Makes *this a copy of x. //! //! <b>Complexity</b>: Linear in x.size(). flat_multimap<Key,T,Pred,Alloc>& operator=(const flat_multimap<Key,T,Pred,Alloc>& x) { m_flat_tree = x.m_flat_tree; return *this; } //! <b>Effects</b>: this->swap(x.get()). //! //! <b>Complexity</b>: Constant. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) flat_multimap<Key,T,Pred,Alloc>& operator=(detail::moved_object<flat_multimap<Key,T,Pred,Alloc> > mx) { m_flat_tree = detail::move_impl(mx.get().m_flat_tree); return *this; } #else flat_multimap<Key,T,Pred,Alloc>& operator=(flat_multimap<Key,T,Pred,Alloc> && mx) { m_flat_tree = detail::move_impl(mx.m_flat_tree); return *this; } #endif //! <b>Effects</b>: Returns the comparison object out //! of which a was constructed. //! //! <b>Complexity</b>: Constant. key_compare key_comp() const { return force<key_compare>(m_flat_tree.key_comp()); } //! <b>Effects</b>: Returns an object of value_compare constructed out //! of the comparison object. //! //! <b>Complexity</b>: Constant. value_compare value_comp() const { return value_compare(force<key_compare>(m_flat_tree.key_comp())); } //! <b>Effects</b>: Returns a copy of the Allocator that //! was passed to the object's constructor. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const { return force<allocator_type>(m_flat_tree.get_allocator()); } const stored_allocator_type &get_stored_allocator() const { return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); } stored_allocator_type &get_stored_allocator() { return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); } //! <b>Effects</b>: Returns an iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator begin() { return force_copy<iterator>(m_flat_tree.begin()); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const { return force<const_iterator>(m_flat_tree.begin()); } //! <b>Effects</b>: Returns an iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() { return force_copy<iterator>(m_flat_tree.end()); } //! <b>Effects</b>: Returns a const_iterator to the end of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const { return force<const_iterator>(m_flat_tree.end()); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rbegin() { return force<reverse_iterator>(m_flat_tree.rbegin()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rbegin() const { return force<const_reverse_iterator>(m_flat_tree.rbegin()); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rend() { return force<reverse_iterator>(m_flat_tree.rend()); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rend() const { return force<const_reverse_iterator>(m_flat_tree.rend()); } //! <b>Effects</b>: Returns true if the container contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const { return m_flat_tree.empty(); } //! <b>Effects</b>: Returns the number of the elements contained in the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const { return m_flat_tree.size(); } //! <b>Effects</b>: Returns the largest possible size of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const { return m_flat_tree.max_size(); } //! <b>Effects</b>: Swaps the contents of *this and x. //! If this->allocator_type() != x.allocator_type() allocators are also swapped. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) void swap(detail::moved_object<flat_multimap> x) { this->swap(x.get()); } void swap(flat_multimap& x) #else void swap(flat_multimap &&x) #endif { m_flat_tree.swap(x.m_flat_tree); } //! <b>Effects</b>: Inserts x and returns the iterator pointing to the //! newly inserted element. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. iterator insert(const value_type& x) { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_value_type>(x))); } //! <b>Effects</b>: Inserts a new value move-constructed from x and returns //! the iterator pointing to the newly inserted element. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) iterator insert(detail::moved_object<value_type> x) { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_moved_value_type>(x))); } #else iterator insert(value_type &&x) { return force_copy<iterator>(m_flat_tree.insert_equal(detail::move_impl(x))); } #endif //! <b>Effects</b>: Inserts a copy of x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant time if the value //! is to be inserted before p) plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. iterator insert(const_iterator position, const value_type& x) { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), force<impl_value_type>(x))); } //! <b>Effects</b>: Inserts a value move constructed from x in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant time if the value //! is to be inserted before p) plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) iterator insert(const_iterator position, detail::moved_object<value_type> x) { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), force<impl_moved_value_type>(x))); } #else iterator insert(const_iterator position, value_type &&x) { return force_copy<iterator>(m_flat_tree.insert_equal(force<impl_const_iterator>(position), detail::move_impl(x))); } #endif //! <b>Requires</b>: i, j are not iterators into *this. //! //! <b>Effects</b>: inserts each element from the range [i,j) . //! //! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j) //! search time plus N*size() insertion time. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class InputIterator> void insert(InputIterator first, InputIterator last) { m_flat_tree.insert_equal(first, last); } #ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... and returns the iterator pointing to the //! newly inserted element. //! //! <b>Complexity</b>: Logarithmic search time plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class... Args> iterator emplace(Args&&... args) { return force_copy<iterator>(m_flat_tree.emplace_equal(detail::forward_impl<Args>(args)...)); } //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... in the container. //! p is a hint pointing to where the insert should start to search. //! //! <b>Returns</b>: An iterator pointing to the element with key equivalent //! to the key of x. //! //! <b>Complexity</b>: Logarithmic search time (constant time if the value //! is to be inserted before p) plus linear insertion //! to the elements with bigger keys than x. //! //! <b>Note</b>: If an element it's inserted it might invalidate elements. template <class... Args> iterator emplace_hint(const_iterator hint, Args&&... args) { return force_copy<iterator>(m_flat_tree.emplace_hint_equal (force<impl_const_iterator>(hint), detail::forward_impl<Args>(args)...)); } #else //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING iterator emplace() { return force_copy<iterator>(m_flat_tree.emplace_equal()); } iterator emplace_hint(const_iterator hint) { return force_copy<iterator>(m_flat_tree.emplace_hint_equal(force<impl_const_iterator>(hint))); } #define BOOST_PP_LOCAL_MACRO(n) \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace(BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \ { \ return force_copy<iterator>(m_flat_tree.emplace_equal \ (BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \ } \ \ template<BOOST_PP_ENUM_PARAMS(n, class P)> \ iterator emplace_hint(const_iterator hint, BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_LIST, _)) \ { \ return force_copy<iterator>(m_flat_tree.emplace_hint_equal \ (force<impl_const_iterator>(hint), \ BOOST_PP_ENUM(n, BOOST_INTERPROCESS_PP_PARAM_FORWARD, _))); \ } \ //! #define BOOST_PP_LOCAL_LIMITS (1, BOOST_INTERPROCESS_MAX_CONSTRUCTOR_PARAMETERS) #include BOOST_PP_LOCAL_ITERATE() #endif //#ifdef BOOST_INTERPROCESS_PERFECT_FORWARDING //! <b>Effects</b>: Erases the element pointed to by position. //! //! <b>Returns</b>: Returns an iterator pointing to the element immediately //! following q prior to the element being erased. If no such element exists, //! returns end(). //! //! <b>Complexity</b>: Linear to the elements with keys bigger than position //! //! <b>Note</b>: Invalidates elements with keys //! not less than the erased element. iterator erase(const_iterator position) { return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(position))); } //! <b>Effects</b>: Erases all elements in the container with key equivalent to x. //! //! <b>Returns</b>: Returns the number of erased elements. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. size_type erase(const key_type& x) { return m_flat_tree.erase(x); } //! <b>Effects</b>: Erases all the elements in the range [first, last). //! //! <b>Returns</b>: Returns last. //! //! <b>Complexity</b>: size()*N where N is the distance from first to last. //! //! <b>Complexity</b>: Logarithmic search time plus erasure time //! linear to the elements with bigger keys. iterator erase(const_iterator first, const_iterator last) { return force_copy<iterator>(m_flat_tree.erase(force<impl_const_iterator>(first), force<impl_const_iterator>(last))); } //! <b>Effects</b>: erase(a.begin(),a.end()). //! //! <b>Postcondition</b>: size() == 0. //! //! <b>Complexity</b>: linear in size(). void clear() { m_flat_tree.clear(); } //! <b>Effects</b>: Tries to deallocate the excess of memory created // with previous allocations. The size of the vector is unchanged //! //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to size(). void shrink_to_fit() { m_flat_tree.shrink_to_fit(); } //! <b>Returns</b>: An iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. iterator find(const key_type& x) { return force_copy<iterator>(m_flat_tree.find(x)); } //! <b>Returns</b>: An const_iterator pointing to an element with the key //! equivalent to x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic. const_iterator find(const key_type& x) const { return force<const_iterator>(m_flat_tree.find(x)); } //! <b>Returns</b>: The number of elements with key equivalent to x. //! //! <b>Complexity</b>: log(size())+count(k) size_type count(const key_type& x) const { return m_flat_tree.count(x); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator lower_bound(const key_type& x) {return force_copy<iterator>(m_flat_tree.lower_bound(x)); } //! <b>Returns</b>: A const iterator pointing to the first element with key //! not less than k, or a.end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator lower_bound(const key_type& x) const { return force<const_iterator>(m_flat_tree.lower_bound(x)); } //! <b>Returns</b>: An iterator pointing to the first element with key not less //! than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic iterator upper_bound(const key_type& x) {return force_copy<iterator>(m_flat_tree.upper_bound(x)); } //! <b>Returns</b>: A const iterator pointing to the first element with key //! not less than x, or end() if such an element is not found. //! //! <b>Complexity</b>: Logarithmic const_iterator upper_bound(const key_type& x) const { return force<const_iterator>(m_flat_tree.upper_bound(x)); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<iterator,iterator> equal_range(const key_type& x) { return force_copy<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); } //! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)). //! //! <b>Complexity</b>: Logarithmic std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const { return force_copy<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); } //! <b>Effects</b>: Number of elements for which memory has been allocated. //! capacity() is always greater than or equal to size(). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type capacity() const { return m_flat_tree.capacity(); } //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no //! effect. Otherwise, it is a request for allocation of additional memory. //! If the request is successful, then capacity() is greater than or equal to //! n; otherwise, capacity() is unchanged. In either case, size() is unchanged. //! //! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws. //! //! <b>Note</b>: If capacity() is less than "count", iterators and references to //! to values might be invalidated. void reserve(size_type count) { m_flat_tree.reserve(count); } /// @cond template <class K1, class T1, class C1, class A1> friend bool operator== (const flat_multimap<K1, T1, C1, A1>& x, const flat_multimap<K1, T1, C1, A1>& y); template <class K1, class T1, class C1, class A1> friend bool operator< (const flat_multimap<K1, T1, C1, A1>& x, const flat_multimap<K1, T1, C1, A1>& y); /// @endcond }; template <class Key, class T, class Pred, class Alloc> inline bool operator==(const flat_multimap<Key,T,Pred,Alloc>& x, const flat_multimap<Key,T,Pred,Alloc>& y) { return x.m_flat_tree == y.m_flat_tree; } template <class Key, class T, class Pred, class Alloc> inline bool operator<(const flat_multimap<Key,T,Pred,Alloc>& x, const flat_multimap<Key,T,Pred,Alloc>& y) { return x.m_flat_tree < y.m_flat_tree; } template <class Key, class T, class Pred, class Alloc> inline bool operator!=(const flat_multimap<Key,T,Pred,Alloc>& x, const flat_multimap<Key,T,Pred,Alloc>& y) { return !(x == y); } template <class Key, class T, class Pred, class Alloc> inline bool operator>(const flat_multimap<Key,T,Pred,Alloc>& x, const flat_multimap<Key,T,Pred,Alloc>& y) { return y < x; } template <class Key, class T, class Pred, class Alloc> inline bool operator<=(const flat_multimap<Key,T,Pred,Alloc>& x, const flat_multimap<Key,T,Pred,Alloc>& y) { return !(y < x); } template <class Key, class T, class Pred, class Alloc> inline bool operator>=(const flat_multimap<Key,T,Pred,Alloc>& x, const flat_multimap<Key,T,Pred,Alloc>& y) { return !(x < y); } #if !defined(BOOST_INTERPROCESS_RVALUE_REFERENCE) && !defined(BOOST_INTERPROCESS_DOXYGEN_INVOKED) template <class Key, class T, class Pred, class Alloc> inline void swap(flat_multimap<Key,T,Pred,Alloc>& x, flat_multimap<Key,T,Pred,Alloc>& y) { x.swap(y); } template <class Key, class T, class Pred, class Alloc> inline void swap(detail::moved_object<flat_multimap<Key,T,Pred,Alloc> > x, flat_multimap<Key,T,Pred,Alloc>& y) { x.get().swap(y); } template <class Key, class T, class Pred, class Alloc> inline void swap(flat_multimap<Key,T,Pred,Alloc>& x, detail::moved_object<flat_multimap<Key,T,Pred,Alloc> > y) { x.swap(y.get()); } #else template <class Key, class T, class Pred, class Alloc> inline void swap(flat_multimap<Key,T,Pred,Alloc>&&x, flat_multimap<Key,T,Pred,Alloc>&&y) { x.swap(y); } #endif /// @cond //!This class is movable template <class K, class T, class C, class A> struct is_movable<flat_multimap<K, T, C, A> > { enum { value = true }; }; //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class K, class T, class C, class A> struct has_trivial_destructor_after_move<flat_multimap<K, T, C, A> > { enum { value = has_trivial_destructor<A>::value && has_trivial_destructor<C>::value }; }; /// @endcond }} //namespace boost { namespace interprocess { #include <boost/interprocess/detail/config_end.hpp> #endif /* BOOST_INTERPROCESS_FLAT_MAP_HPP */